THE ZCACHE: DECOUPLING
WAYS AND ASSOCIATIVITY

Daniel Sanchez and Christos Kozyrakis

Stanford University

MICRO-43, December 6™ 2010

Executive Summary
- e

7 Mitigating the memory wall requires large, highly associative caches
Last-level caches take ~50% chip area, have 24-32 ways in latest CMPs

More ways =2 large energy, latency and area overheads

1 ZCache: A highly associative cache with a low number of ways
Improves associativity by increasing number of replacement candidates
Retains low energy /hit, latency and area of caches with few ways

Based on skew-associative caches and cuckoo hashing

7 Analytical framework explains why zcache works

Associativity depends on number of replacement candidates, not ways or
locations a block can be in

Outline
- N

01 Introduction
11 ZCache
-1 Analytical Framework

1 Evaluation

Introduction

11 Uses of high associativity:

Improve performance by reducing conflict misses

Partitioning, pinning, storing speculative data (e.g. TM, TLS)

7 Increasing number of ways affects areaq, delay, energy

Increase over 4-way (%)

50
40
30
20
10

16-way m 32-way
101%

1all

Area Hit Latency Hit Energy

IPC improvement
vs 4-way (%)

OPNNMNO O©®O

16-way ® 32-way

i

randO

ammp_m

Techniques for high associativity (1/2):

oo Cisatnesmmme O

1 Allow multiple locations per way

Column-associative caches [Agarwal?3], set-balancing
cache [Rolan09], ...

Hit latency T, hit energy

0 Use a victim cache
VC [Jouppi?0], Scavenger [Basu07], ...
Area T, hit latency T, hit energy 7

-1 Use indirection in the tag array
lIC [HallnorOO0], V-Way cache [QureshiO5]
Area T, hit latency T, hit energy 1

Techniques for high associativity (2/2):

Better hashing
-6

1 Use a hash function to index the cache
Simple hashing significantly reduces conflicts [KarbutliO4]

1 Skew-associative caches [Seznec9 3]
Index each way using a different hash function

A line conflicts with a different set of lines on each way, reducing
conflict misses
No sets, cannot use replacement policy that relies on set ordering

Indexes

Line Set O
address index Line
address O
Hash
function Q

Way0 Wayl Way?2 Way0 Wayl Way?2

Outline

1 Introduction
0 ZCache
-1 Analytical Framework

1 Evaluation

The ZCache Design
O

Indexes

1 Lookups and hits happen as in O

Line
address

1 Misses exploit the multiple hash functions to obtain an
arbitrarily large number of replacement candidates

a skew-associative cache

Way0 Wayl Way2

Phase 1: Walk the tag array, get best candidate
Phase 2: Move a few lines to fit everything
This happens infrequently (on misses) and off the critical path

Draws on prior research in cuckoo hashing

LCache Replacement

N 060 o A W N — O

11 Start replacement process
while fetching Y

LCache Replacement

LCache Replacement

N 060 o A W N — O

0 Instead of evicting A, can move it and evict K or X

LCache Replacement

Way 0 Way 1 Way 2
0]
1
/®_> 2
3
-@— ;
\@_> 5
6
7
15t -level
. ¢ca ndidates ,

Addr | Y A D M

HO 5 5 3 2

H1 4 2 4 5

H2 0] 1 7 0

LCache Replacement

Way 0 Way 1 Way 2
M 0]
1
H 2
/®_> R 3
@ -
Q 5
\@_> | ’
S 7
1+t -level 2" _level
) candidates g candidates ,
Addr | Y A D M B K X P Z S
HO 5 5 3 2
H1 4 2 4 5
H2 0 1 7 0]

LCache Replacement

Way 2

Way 1

Way 0

Y

Addr

HO

H1

H2

LCache Replacement
(%)
(&)

Y A D M B

Addr

LCache Replacement

LCache Replacement

LCache Replacement

01 Hits always take a single lookup

N o060 0o h W DM — O

ZCache Implementation Overview
S

1 Replacements take place:
Off the critical path
Concurrently with other operations No effect
Walk accesses are pipelined on hit latency

Do not saturate tag bandwidth
in practice

11 Energy per miss mostly determined by walk
Similar to set-associative cache of same associativity

1 Cheap to implement
SRAM with 10s of bits to track candidates
Leverages existing MSHRs

1 See paper for more details

Number of Candidates

71 An L-level walk on a W-way zcache gets R candidates:

R:W-i(W—l)”

V -

2 3 4 8
2 4 8
4 16 64
6 21 52 456

Few ways (W=4) give many candidates with shallow walks

Ratio of tag bandwidth vs bandwidth of next level limits
number of candidates

Outline
N | I

1 Introduction
11 ZCache
0 Analytical Framework

1 Evaluation

An Analytical Associativity Framework
Y

1 Comparing associativity across cache designs is hard
Ways do not mean much

Conflict misses are workload and architecture-specific

1 Goals
Find a general way to characterize associativity

Analyze what determines the performance of a zcache

General Cache Model
N

1 Cache array:
Holds tags and data
Implements associative lookup by address
On a replacement, gives list of replacement candidates
Model assumes nothing about array organization
1 Replacement policy: Maintains a global rank of which
cache blocks to replace
All policies conceptually do (LRU, LFU, OPT, ...)

Implementation does not need to

Associativity Distribution
7

0 Eviction priority: Rank of a block given by the replacement
function, normalized to [0, 1]

Higher is better to evict

01 Associativity distribution: Probability distribution of the
eviction priorities of evicted blocks
Higher associativity € =2 distribution more skewed towards 1.0

Measures how well the array does, not the replacement policy

m For good performance, replacement policy also needs to do a good job!

Uniformity Assumption

0 If the cache array gives R replacement candidates with
uniformly distributed priorities,

E,.,.E,~iid. U[0]]
A=max{Fk,,...,E,}

F,(x)=P(A<x)=x",xe€[0,1]

| R=4 — R=8 A=16 — R=64|

LU

DB

-
—
—
-

.

Associativity COF

&
T

0.0 0.2 0.4 (.G 0.8 1.0
Eviction priority

Associativity Distributions in Practice

- = Unil. Assumgdtion — gpsi.m — canneal — blackscholes
WUpNIES M mgrid_m fluidanimate
SetAssoc 4-way SetAssoc 16-way

W7 W o ge

. — . 1 Set-associative caches do
L0 Lo
D Q [] [] []
Sosb] S significantly worse than UA
2 7/ (| 5
S 0.4 S A B 04
2 oy %
<02} A < 02

I L | i 1 4
00 02 04 06 08 10 00 02 04 06 08 10

Eviction priority Eviction priority
Lo SetA!ssoc! 4-wa!1y w/?ash - SetA?soc !1 6-w!ay w/!hash
LSLO.S_ I:_ :Q';] HqShing (H3) improves
‘?06_ Wi - - '*2" o o o o
2 Y/ associativity, but still
8 04 - 77777777 77777777 ' I’ 77777 | :6; . . . {
ol 0 {<el)| sensibly worse than UA
22 5 5/;,

= T | | | | =
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Eviction priority Eviction priority

Associativity Distributions for ZCaches

- = Unil. Assumgpdion — aFpsim — canneal — blackscholes
WUpNiES_ M mgrid_m fluidanimate

10 El‘LE‘h:AEEc?E 4-\':-'3.}!' {.:7_4!4] l%ﬁﬂ‘ﬂ.ﬁsst}ﬁ 16-way (Z16/16)
[0 Skew-associative caches
'f'j- ?- (1-level zcaches) are very
E“ j% close to UA

T ey T

ZGache 4way/1 an-} |, ZCache 4way/52rc

R L ;ﬁ B S o 1 Increasing candidates but
%M__ RS — - - d %m} ____________________________ not ways still yields distrib
i i very close to UA

o 02 04 06 08 10 00 02 04 06 08 10
Eviction priority Eviction priority

Analytical Framework: Conclusions
- %

7 In caches with good hashing, the number of replacement
candidates R determines associativity

1 ZCaches provide large number of candidates with few
ways =2 Decouple ways and associativity

Outline
N 1

1 Introduction
11 ZCache
-1 Analytical Framework

1 Evaluation

Methodology
- 30

1 Infrastructure:
CACTI-based models for cache cost estimates
McPAT for full-CMP areaq, power estimations

Microarchitectural simulation with Pin-based simulator

0 Target system:
32 in-order x86-64 cores (single-issue, 2GHz, 32KB |/D L1s)
Fully shared L2, 8MB, 8 1MB banks (set-assoc/zcache)
All L2 caches use hashing (H;)

0 /2 workloads:
Multithreaded: PARSEC, SPECOMP
Multiprogrammed: SPECCPU2006

1 See paper for more details

Cache Costs

60
50
40
30
20
10

W SA 4-way

Area (mm2)

6

O —= N W M O

WSA 16-way ®SA32-way ©HZ4/16 WZ4/52

Hit Latency (ns)

1.4
1.2

1
0.8
0.6
0.4
0.2

0

Hit Energy (nJ)

4

Miss Energy (nJ)

- Each design is optimized for area™latency*energy
11 ZCaches:

o1 Retain hit area, hit latency, hit energy of a 4-way SA cache

o1 Energy per miss comparable to similarly-associative SA cache

Performance and Energy-Efficiency

- 20
c ~
53 15
0\/
§§~10
Q-I
Es °
o> O
o.

-5

15
33
£3 10
£ >
=3 °
Rﬂ'
n_w O
E>

1
O

W SetAssoc 32-way

W Z 4-way/52-rc

mill

ammp_m

randO

cactusADM

gmean (72)

gmean (10)

ammp_m

randO

cactusADM

gmean (72)

gmean (10)

Conclusions
-

1 ZCaches enable efficient highly-associative caches
Low number of ways
Associativity gained by increasing replacement candidates

Costs of high associativity (energy, tag bandwidth) paid only
on misses

o Analytical framework shows that replacement
candidates determine associativity

THANK YOU FOR
YOUR ATTENTION

QUESTIONS?

Backup: Replacement Timeline

Miss Walk Relocations
5 & Time O 5 10 15 20 105
2 3 WayO |5 3[2 7]4]6]1 4|5 4 5
£ T Wayl |4 2[5 6]3[3]2
< ¢ Way2|0 17 1/o[5]3] 1
S = Way0 A B[P LIN|G|F N|A|X Y
£ 'S Wayl D K|z T|E[E[K
S ° Way?2 M X|s X |M|Q[R x| |A
§ ¢ Way0 A N[A[X Y
E?qu] D
5 ° Way2 M X| |A
()
Memory bus Y N Y

Fetch on miss Writeback (if needed) Miss response

Backup: LRU with coarse-grain timestamps

11 8-bit timestamp per tag

11 Tag each block with a global timestamp counter

71 Increment timestamp every k=5% accesses

2 Wraparounds are rare

Current TS

-

Timestamp distrib

Timestamp 255

o

